Implementing a RFC 3428 SIP IM client on Android

Implementing a RFC 3428 SIP IM client on Android

Background

A good friend of mine presented a HTC Hero to
me one day. He had a very impressive
application augmenting the live video image of
the phone's camera with some rendered
information. It caught my attention — and
curiosity — immediately. The same evening, I
downloaded the Android SDK and did my first
steps. I ordered one of these phones and started

to look for an interesting application to
implement — ideally with some telephony
background.

It came the same friend asked for a SIP based IM
application on Android — the challenge. Some
research produced Jean-Luc Deruelle' ported the
JAIN SIP stack already to Android and
Emmanuel Proulx* did a basic AWT SIP IM
client already.

The ingredients for this SIP IM client — and an
interesting journey to get in touch with Android
programming paradigms.

Setting up the environment

The first website to visit when looking for
Android development information is definitely
http://developer.android.com/.

From this website you can download the SDK?
which nicely integrates with the Eclipse IDE.
The installation of the SDK and setting up the
Eclipse IDE is described here:

http://developer.android.com/sdk/installing.html.

During the development of this application the
Android SDK 1.6r1 in combination with Eclipse
3.5.0 (Galileo) on a Ubuntu 9.04 (Jaunty) system
was used. Final testing was done on a HTC Hero
device.

To test the Android based IM client another Java
based AWT client named “SIP IM AWT” was
used. The AWT version is an adapted version of
“TextClient” done by Emmanuel Proulx.

A quick-starter’s guide
by Michael Maretzke
30th October 2009

After unpacking the archive® the root directory
of “sip-im-awt” contains an ANT build file.
With Java and ANT installed the following
commands brings up the AWT SIP IM client.

ant package
java -jar sip-im-awt-1.0.jar michael awt 6060

From "MiMa"
<sip:michasl@thesipdomain

org>: SIF ahail

Send Message:
[|

From: sip:michael_awt®127.0.0.1:6060

To: [sipmichael@127.0.0.1:8888 |

Figure 1 SIP IM AWT client

The root folder of the AWT SIP IM client
contains an Eclipse project as well. Simply select
“File” — “Import...” — “Existing Project into
Workspace” and select the root folder of the just
extracted AWT SIP IM client.

The Android based SIP IM client needs some
further work to be done before executing it on
the emulator — or the device.

First, ensure to have Eclipse with the Android
SDK installed. Download’ the Android SIP IM
client. Unpacking the archive results in the root
directory named “sip-im-android”. The root-
folder contains an Eclipse project. Import the
project as described above for the AWT client.
Assuming a correctly setup working
environment, clicking on the “Run as...” button
allows you to select “Android Application” as
the way to execute the project.

Eclipse takes care of packaging, signing and
starting the emulator for you. Starting the
emulator takes quite some time ...

Meanwhile switch the perspective of Eclipse to
the DDMS perspective. This is a collection of
useful debugging views of your Android
emulator — containing the “LogCat” called
system log of your emulator.

Version 1.0

30th October 2009

http://developer.android.com/sdk/installing.html
http://developer.android.com/

Implementing a RFC 3428 SIP IM client on Android

After a while, your emulator should look like
this.

Tl @ 2:33pMm
SIPIM
Nickname (e.g. Jane Doe
| <displayName NOT SET>
U SIP ID between sip: and @)
<sipName NOT SET>
D

Figure 2 SIP configuration Ul on Android

The client started for the first time and didn't
have any SIP relevant parameters stored. Now,
it's time to enter them.

Nickname: MiMa
Username: michael

Domain: thesipdomain.org
Port: 8888

SIP IM

Nickname (e.g e)

|

sernar > 1D between sip: and @)

michael

thesipdomain.org

Port number of SIP listene

8888 [

Figure 3 filled in parameter settings

The nickname corresponds to the DisplayName
in the SIP message to be used to send IM — SIP
MESSAGE requests. The username
corresponds to the portion between “sip:” and
the “@” in your SIP address. The domain is the
portion between the “@” and the “:”. The port
will be used to setup the SIP UDP and TCP
listeners for the client. Pressing on ‘“Save
Settings” leads to the IM UI screen.

To switch on and off the on-device debug log,
press “MENU” and select “Debug Window”.

The lower part of the screen now shows debug
information produced by the client. Scrolling
down unveils that a SIP stack is now listening on
port 8888 — what a surprise!

Now, send a message from the Android device
to the AWT IM client.

Put “From Android to AWT!” in the “Send
Message...” named text field and
“sip:michael_awt@10.0.2.2:6060” in the “To”
text field. Press the “Send” button.

Send Message
From Android to AWT]
To -
sip:michael_awt@10.0.2.2:6060

Figure 4 Sending IM from Android to AWT

Ideally, the two clients on your system look like
the ones above. A remark on the 10.0.2.2 IP
address: the emulator takes 10.0.2.2 as a
synonym for the emulator hosting system's
127.0.0.1 address®.

Before we send a message from the AWT client
to the Android Emulator we need to configure a
port forward for port 8888 from the hosting
system towards the emulator.

telnet localhost 5554

In the emulator's console, type

redir add udp:8888:8888

Now, type “Back from AWT to Android!” in the
message field of the AWT client and
“sip:michael @127.0.0.1:8888” into the address
field.

Great — it seems to work on the emulator. Let's
have a look at the workflow when deploying the
application to the device.

Version 1.0

D-

30th October 2009

Implementing a RFC 3428 SIP IM client on Android

p .

From Android to AWT]
®
sip:michael_awt@10.0.2.2:6060

Received Messages:
From "Mibia"

<sip:michasl@hesipdomain.org>: From
{android to AWT!
—-sent

Send Message:
[Back from AWT to Android!

1 From:sip:michasl_awt@127.0.0.1:6060
To: [sip:michael@127.0.0.1:8588

S

Figure 5 Sending IM from AWT to Android

The funny thing about putting the application on
a real device is — it's really easy. And it's ways
faster than working with the emulator.

To setup a connection to the device, follow the
description in the SDK documentation’.

Well, that's it! Shut down your emulator and
deploy your application using Eclipse. Now, you
can utilize the DDMS view to monitor your real
device. That's really cool!

Can't over trump this? Well, try debugging on
the device Set a breakpoint and click on
“Debug as ...” ... That is really impressive!

Architecture

The architecture of the IM client is surprisingly
simple: a layer takes care of the Ul interactions
and the other of the SIP communication.

[=| com.maretzke.sipim.ui.android. ChatSettings
Q com.maretzke.sipim.ui.android.text. EditTextView
pl
‘com.maretzke.sipim.ul.android.ChatUl
pl

L

= com.ma

sipim.sip.SipC
P-SIp

msg 1 1 1
winterface »

@ oom.marelzke.slplm.ul.androld.Messq%egL\s;lener

winteriace =
‘com.maretzke.sipim.ui.android.LogListzner
- sipProperties

winterface »
2] ‘com.maretzke.sipim.sip.SipProperties

Qoom. .sipim.sip.SipProper p

Figure 6 Architecture overview

The classes sipCommunication, SipProperties
are part of the
communication layer. ChatUI, ChatSettings
and EditTextview are part of the Android UI
layer. MessageListener and LogListener are
interfaces to connect both layers.

and SipPropertiesImpl

The Android Ul

The heart of the application is the class chatur.
It is called during creation of the overall
application and takes control over the major
control flow.

ChatUi

Walking through the code, initially
variables are defined. The section ...

some

ChatUI.java: 102ff

// handler to update the UI layer from a non-UI thread
// this is necessary to update the log messages and chat
// messagesfrom the SIP communication layer (a non-UI

// thread)

final Handler updateUIHandler = new Handler();

// this Runnable will be associated to the above mentioned
// updateUIHandler to update the UI elements within the
// scope of the UI managing thread
final Runnable runnableUpdateUI = new Runnable() {
public void run() {
updateLogUI();
updateChatUI();
}
}i

/**
* This method is called from the UI Handler runnable to
* update the log message UI element.
</
private void updateLogUI() {
logBox.setText (contentLog) ;
}

/%%
* This method is called from the UI Handler runnable to
* update the chat message UI element.
*/
private void updateChatUI() {
chatBox.setText (contentChat);
}

VEZS
* Print a log message in the UI element for log messages.
* Implementation of LogListener interface.
*/
public void logMessage(String msg) {
contentLog += msg + "\n";
updateUIHandler.post (runnableUpdateUI) ;
}

[%%
* Print a chat message in the UI element for log
* messages. Implementation of MessageListener interface.
*/
public void messageReceived(String from, String msg) {
contentChat += from + ">> " + msg + "\n";
updateUIHandler.post (runnableUpdateUI) ;
}

defines an interesting element. The SIP
communication layer receives incoming
messages and wants them to be shown in the UL
Same applies for log messages. Android,
however doesn't allow non-UI threads to update
UI elements. Hmmm.

Version 1.0

30th October 2009

Implementing a RFC 3428 SIP IM client on Android

The solution is to implement a Handler in the Ul
thread to trigger the Ul update. The methods
logMessage() and messageReceived() utilize
the Handler to post a message into the UI thread
containing the runnable. The runnable simply
calls the methods updateLogUI() and
updatecChatUI (). These methods update the UL

The very same principle is applied to show the
progress dialog when the application saves the
user preferences to a file. The chatSettings
Activity is started as an asynchronous action:

|l| ChatUI.java: 188 and 277

Intent intent = new Intent(this, ChatSettings.class);
startActivityForResult(intent, CHAT_SETTINGS);

After finishing, the onActivityResult() method is
invoked and allows the ChatUI to act on the
results.

|l| ChatUI.java: 298ff
public void onActivityResult(...) {
if (requestCode == CHAT SETTINGS) {
progress = ProgressDialog.show(this, "", "Saving
settings... Please wait!", true);

Thread saveData = new Thread() {
public void run() {

save information to file
setting up the stack

updateUIHandler.post (hideProgressDialog);
}
}i
// start the above defined thread
saveData.start();
}
}

final Runnable hideProgressDialog = new Runnable() {
public void run() {
progress.hide();

}
}i

The 1/O intense portion is outsourced to a thread
to keep responsiveness of the UI high. The
method starts a progess dialog and then defines
and starts the I/O thread. The final line in the
thread informs again the Handler to put the
Runnable hideProgressDialog into the UI
message queue. The progress dialog disappears.

Another nice snippet of code is the one to
determine the non-loopback IP address of your
Android device. The current Android SDK

implementation of
InetAddress.getLocalHost () .getAddress()

always (!) returns the loopback address
(127.0.0.1) — no matter if there's a routable
address available. This turns out to be an issue
when needing a routable IP address. The
internet, however, produced a solution®:

|l| ChatUI.java: 442ff

private String getLocalIpAddress() {

try {
for (Enumeration<NetworkInterface> en =

NetworkInterface.getNetworkInterfaces();
en.hasMoreElements();) {
NetworkInterface intf = en.nextElement();
for (Enumeration<InetAddress> enumIpAddr =
intf.getInetAddresses();
enumIpAddr.hasMoreElements();) {
InetAddress inetAddress =
enumIpAddr.nextElement();
if (!inetAddress.isLoopbackAddress()) {
return
inetAddress.getHostAddress () .toString();
}
}
}
} catch (SocketException ex) {
logMessage("getLocalIpAddress - Exception caught.");
ex.printStackTrace();

}

return null;

}

ChatSettings

The information transfer between the various
Activities is done utilizing the
SharedPreferences class.

To read the values it's enough to get a reference
to them like this:

|i| ChatSettings.java: 47

SharedPreferences sp =
getSharedPreferences("sip-im-android", MODE_PRIVATE);

Modifying access needs the Editor being
involved — and don't forget to commit() your
changes!

|i| ChatSettings.java: 97ff

SharedPreferences.Editor spe =
getSharedPreferences("sip-im-android", MODE_PRIVATE).edit();

spe.commit();

EditTextView

The EditTextview class extends Textview to
become an editable version of Textview. This
version allows additions to the text and is able to
scroll content.

The Communication layer

The RFC 3428 “(SIP) Extension for Instant
Messaging*® defines an IM extension for the SIP
signalling protocol.

An example message according to RFC 3248 is
shown below.

MESSAGE sip:michael awt@10.0.2.2:6060;transport=udp SIP/2.0
Call-ID: 8280d71d051470fede6c78a52cffc638@10.0.2.15
CSeq: 1 MESSAGE

From: "MiMa" <sip:michael@thesipdomain.org>;tag=sip-im-
android-v1.0

To: "michael awt" <sip:michael awt@10.0.2.2:6060>

Via: SIP/2.0/UDP 10.0.2.15:8888;branch=branchl
Max-Forwards: 70

Contact: "MiMa" <sip:michael@thesipdomain.org:8888>
Content-Type: text/plain

Content-Length: 12

The Message.

Version 1.0

30th October 2009

Implementing a RFC 3428 SIP IM client on Android

The message flow as defined in RFC 3248 is
shown below and implemented by the two SIP
IM clients. They only omit the SIP Proxy shown
in between.

SIP UA
Sender

SIP
Proxy

SIP UA
Receiver

 MESSAGE

MESSAGE _

<« 200 OK

< 2000K

The implementation of SipCommunication is
straight forward. The constructor takes over

SipProperties which hold important
information about the SIP stack to create — but
also information about the wuser sending

messages — and call back methods to inform the
Ul about log messages (LogListener) and
incoming IM messages (MessageListener). The
constructor instantiates a SIP stack instance with
UDP and TCP listen points.

The methods

processResponse()

sendMessage () and
implement the above
drawn message flow according to RFC 3248.

The method processRequest() deals with
incoming IM SIP messages and hands them over
to the UI thread to be displayed.

The setNewListenerPort() method is invoked
by the UI whenever the listening port of the IM
client is changed by the user.

@ SipCommunication.java: 308ff

public void setNewListenerPort(SipProperties sipProperties)
w q

log.logMessage("Recreating SipStack.");

sipStack.stop();

createSipStack(sipProperties);

}

The method basically stops the current SIP stack
and re-instantiates a new one matching the new
port number.

Limitations

This prototype implementation obviously has
some limitations.

First of all, it seems a bit odd to enter IP
addresses in the SIP address to have some form
of routing at all. Ideally, a SIP Proxy took over
the address resolution.

Second, the current contact management
implementation is not connected to anything

inside the phone. It's a hand-made and very
simplistic solution to save some time typing.
Furthermore, contacts are only stored to the user
preference file (which in turn is only stored
when the user presses the “Save Settings” button
on the ChatSettings UI.

Last, the implementation is straight forward and
not tested to whatever error conditions — hence
may crash quite easily (run it with no IP address
... having mobile and WiFi switched off ...).

Lessons learned

Android Ul

The handling of the Ul was quite a surprise.
Knowing MS Windows, Java and some other
Windowing toolkits it turned out to be quite
complex to notify Ul threads about information
changes happening in non-UI threads. But in the
end it seems logical — since the phone should be
able to respond to asynchronous events like
phone calls any time. So, the above described
mechanisms utilizing the Handler class seemed
like a good way forward.

Ul Responsiveness

In the spirit of responsiveness it seems logical as
well to outsource long-running or I/O intense
processes to separate threads. I learned my
lesson during the progress dialog exercise.

Information share

Information sharing between Activities happens
via the SharedPreferences class. Any other
idea?

Emulator and networking

It is important to understand the Emulator and
how it solves networking. Especially, knowing
how to set the port forwarding (redir) and the
link to the host's local loopback address
(10.0.2.2) is quite useful.

Credits

I'd like to say thank you especially to Mudumbai
Ranganathan (better known as Ranga) from the
NIST institute for the excellent JAIN SIP
reference implementation — a true reference!
Thanks as well to Jean-Luc Deruelle for proving

Version 1.0

30th October 2009

Implementing a RFC 3428 SIP IM client on Android

that the RI implementation works on Android.
This helped reassuring quite a lot! And last,
thanks to Emmanuel Proulx creating the
“template” for this application — the TextClient
called SIP IM client.

Important links
The SIP IM client can be downloaded from:

http://www.maretzke.com/pub/howtos/sip im/in
dex.html

For questions, discussions, improvements feel
free to contact me via michael @maretzke.com.

'Jean Deruelle's blog entry on his nightly port of the JAIN SIP
stack to the Android platform:
http://jeanderuelle.blogspot.com/2008/10/jain-sip-is-working-on-

top-of-android.html
*Emmanuel Proulx introduces the JAIN SIP API on the Oracle (ex-

BEA) developer's portal:
http://www.oracle.com/technology/pub/articles/dev2arch/2007/10/i
ntroduction-jain-sip.html

3Android SDK download link:
http://developer.android.com/sdk/index.html

4Download the sources from:

http://www.maretzke.com/pub/howtos/sip im/index.html

5Download the sources from:
http://www.maretzke.com/pub/howtos/sip _im/index.html

“See the remarks on emulator and networking:

http://developer.android.com/guide/developing/tools/emulator.html

#emulatornetworking
’SDK documentation on connecting a real Android device to the

development environment:
http://developer.android.com/guide/developing/device.html
¥Get the ip address of your device by ,Martin‘:
http://www.droidnova.com/get-the-ip-address-of-your-
device.304.html

°See e.g. http://www.rfc-editor.org/rfc/rfc3428.txt for the RFC
3248

Version 1.0 -6 -

30th October 2009

http://jeanderuelle.blogspot.com/2008/10/jain-sip-is-working-on-top-of-android.html
http://jeanderuelle.blogspot.com/2008/10/jain-sip-is-working-on-top-of-android.html
http://www.maretzke.com/pub/howtos/sip_im/index.html
http://www.maretzke.com/pub/howtos/sip_im/index.html
http://www.maretzke.com/pub/howtos/sip_im/index.html
http://www.maretzke.com/pub/howtos/sip_im/index.html
mailto:michael@maretzke.com
http://www.rfc-editor.org/rfc/rfc3428.txt
http://www.droidnova.com/get-the-ip-address-of-your-device,304.html
http://www.droidnova.com/get-the-ip-address-of-your-device,304.html
http://developer.android.com/guide/developing/device.html
http://developer.android.com/guide/developing/tools/emulator.html#emulatornetworking
http://developer.android.com/guide/developing/tools/emulator.html#emulatornetworking
http://developer.android.com/sdk/index.html
http://www.oracle.com/technology/pub/articles/dev2arch/2007/10/introduction-jain-sip.html
http://www.oracle.com/technology/pub/articles/dev2arch/2007/10/introduction-jain-sip.html

	Background
	Setting up the environment
	Architecture
	The Android UI
	ChatUI
	ChatSettings
	EditTextView

	The Communication layer
	Limitations
	Lessons learned
	Android UI
	UI Responsiveness
	Information share
	Emulator and networking

	Credits
	Important links

