
Implementing a JAIN SLEE Resource Adaptor

Version 1.1 -1 - 5th October 2005

Implementing a JSLEE Resource Adaptor
A quick-starter’s guide

by Michael Maretzke
5th October 2005

Introduction
“JAIN SLEE? JSLEE? A resource adaptor?
What’s that all about? I’ve got a network
protocol stack written in what-so-ever language
and need to integrate it into a JSLEE application
server – how should I do this?”
These are questions which are addressed in this
paper.

What is JAIN SLEE?
To make it very short and simple: “JSLEE is a
low latency and high throughput application
server for event processing designed for
stringent requirements of core network
signalling applications providing a distributed
component model and a standardized
framework.” 1 2
Initially, JSLEE was designed for network
signalling environments. However, the whole
architecture proved to be generic enough to
allow for other application areas as well. 3

What is Mobicents?
„Mobicents is an Open Source VoIP Platform.
Mobicents is the First and Only Open Source
JAIN SLEE 1.0 Certified product, which brings
to telecom application developers what J2EE
brings to Web and Enterprise application
developers.
In the scope of telecom Next Generation
Intelligent Networks (NGIN), Mobicents fits in
as a high-performance core engine for Service
Delivery Platforms (SDP) and IP Multimedia
Subsystems (IMS).“4
For the scope of this paper and the idea of
creating a simple-to-use and easy-to-understand
Resource Adaptor which helps to increase the
understanding of JSLEE technology in the
industry the Mobicents application server was
selected for the Resource Adaptor.
Mobicents can be obtained freely at
www.mobicents.org and is quite stable and very
simple to install and work with. On the website a
lot of information5 can be found on how to
install and compile the application server.

What is a Resource Adaptor?
JSLEE is an application server, including an
application model, which is based on
components – the so called Service Building
Blocks (Sbb). The whole application model is
agnostic to whatever networking protocol or
event source is utilized to trigger the execution
of the coded business logic. Events in the JSLEE
application model are POJOs (Plain Old Java
Objects) and need to be created somewhere.
The Resource Adaptor (RA) in JSLEE bridges
the application model and the underlying event
infrastructure. The event source could be
everything emitting events implemented in
whatever language and environment. Examples
for event sources are a SIP stack, a JCC stack, a
TCP/IP stack or even a HTTP stack. The RA
accepts arriving protocol signals or specific
events, creates the Java representations and fires
them into the JSLEE application server.

The Structure of a RA
A JSLEE RA consists basically of a Resource
Adaptor Type and a Resource Adaptor6.
The RA Type specifies the Events emitted by
this class of RAs, the shareable state information
between application logic Sbbs and RA – the
Activity Context, and the interface utilized by
JSLEE application logic Sbbs to access RA
functions. Usually, RA Types are defined by an
industry with same interests. In
telecommunication industries a Call Control RA
Type or a SIP RA Type may be good examples.
The RA implements exactly one RA Type at a
time. JNI technology is used to integrate non-
Java stacks. Usually, RAs are stateful and model
an internal state machine of the protocol
activities. The RA decides on incoming signals
to alter the internal state and to notify the
JSLEE. To allow Sbbs to access the state of a
RA, Activities and Activitiy Contexts (AC) are
introduced.
An Activity, for example, represents one phone
call or a game session. Incoming signals are
mapped to one session-unique AC (the interface
to the Activity) via the Activity Handle. The AC
is accessible both from the RA and the Sbbs.

Implementing a JAIN SLEE Resource Adaptor

Version 1.1 -2 - 5th October 2005

To conclude, the RA Type defines the kind of
RA, the RA implementation wraps a specific
protocol stack end emits Java objects as Events
into the JSLEE application server and the AC is
established to exchange state information
between the RA and the Sbbs.

Figure 1 Resource Adaptor, Resource Adaptor Type,

Protocol Stack, Activity Context and JSLEE

Confused? Don’t worry; let’s get down to the
implementation!

The RAFrame Example
What does this example demonstrate? The
Resource Adapter Framework (RAFrame)
example shows how an existing Java-based
protocol stack (RAFStack) is integrated into a
JSLEE environment. Therefore, the RAFrame
Resource Adaptor and all needed interfaces and
classes are discussed in greater detail. The
dependencies between Java code and
deployment descriptors are illustrated and a
simple example service (BounceSbb) is
explained.
The source code for the example can be
downloaded from the maretzke.com web site7.

The structure of the RAFrame
Example
The directory structure of the example starts
with two root directories: RAFrame and RASbb.
RAFrame contains all relevant RA files and Sbb
all service related files.
Both folders contain the directories src,
descriptors, lib, build, dist and bin.
The folder src contains java sources for either
the RA or the service; descriptors contains
all deployment descriptors; lib contains
libraries needed to compile the sources; build
contains all java class files after a successful ant
run; dist contains the ready-to-deploy archive
files and bin contains scripts to deploy the RA
or the service.

The RA splits in 6 packages:
• com.maretzke.raframe.message
• com.maretzke.raframe.ra
• com.maretzke.raframe.ratype
• com.maretzke.raframe.stack
• com.maretzke.raframe.test.server
• com.maretzke.raframe.test.client

The service’s package is:
• com.maretzke.raframe.service.bounce

Both, the RA and the service ship with
build.xml files for automated building and
packaging. The process of building and
deploying the RA is explained later.

The Protocol
For the purpose of creating an example RA for
mainly (self-)educational purposes, a simple and
easy-to-understand protocol was needed. The
RAFrame protocol was born. It is TCP/IP based
and follows this format rules:

ID COMMAND

The protocol contains a unique identifier (ID)
and a command string (COMMAND). A valid
protocol message is for example:

100 INIT

Protocol messages may contain the commands
INIT, ANY and END.

Figure 2 Valid protocol state machine

A session is started with the INIT command.
Next any number of ANY commands may occur.
The session terminates with the END command.
Any other sequence of commands is considered
to be invalid.

The Protocol Stack
The stack for the described protocol consists of
three classes and can be located in the package
com.maretzke.raframe.stack.
The class RAFStack contains the stack logic and
implements a TCP/IP ServerSocket.
Furthermore, it offers logic to send information
to another RAFStack implementation.
An incoming TCP/IP connection let the
RAFStack instantiate a new RAStackThread
and delegates the work for the incoming
information. The RAStackThread reads the
incoming information and informs listening
instances. These objects implement the

Implementing a JAIN SLEE Resource Adaptor

Version 1.1 -3 - 5th October 2005

RAFStackListener interface and have
previously registered for notification.
The stack implementation is multi-threaded to
decrease idle times needed for socket
communication.

Testing the Protocol Stack
To see the protocol stack working, open two
command line windows (cmd.exe), change to
the RAFrame\bin directory and execute
startRAFServer.bat in the first window and
the Swing version of the client with
startSwingRAFClient.bat in the second
window.

Figure 3 The RAFSwingClient

The server and the client both utilize the
RAFStack classes to communicate. The
according classes are located in the package
com.maretzke.raframe.test.client and
com.maretzke.raframe.test.server.
Now, we have a stack implementation which
allows TCP/IP based communication between
server and client instances. However, the stack
does not ensure that the defined protocol is not
violated. That will be one of the tasks for the
RA.

Deployment Descriptors
Well known (and hated) from the J2EE world,
JSLEE applies the concepts of Deployment
Descriptors (DD) for configuration, deployment
and packaging. The various DDs and their
meaning for the different JSLEE entities are
explained later on despite one: deployable-
unit.xml. It is important for packaging
purposes and references all elements contained
in a JSLEE archive ready for deployment – the
deployable unit.

Figure 4 Overview of various Deployment Descriptors

The RAFrame Events
As mentioned before, Events are means to
communicate between RAs and Sbbs in the
context of JSLEE. In the case of RAFrame RA
the encoding of the protocol messages in Java
objects is quite simple.

public interface Message {
 public final static int INIT = 1;
 public final static int ANY = 2;
 public final static int END = 3;

 public String getId();
 public String getCommand();
 public int getCommandId();
}

Listing 1 Interface Message

The Java interface Message abstracts a protocol
message of the RAFStack. The concrete
Message object is wrapped in a MessageEvent
object. Events, ready! Objects implementing this
interface are created by the RA and delivered
into the JSLEE environment.

public interface MessageEvent {
 public Message getMessage();
 public Object getSource();
}

Listing 2 Interface MessageEvent

To create real objects of Message and
MessageEvent the RA and Sbbs both utilize a
MessageFactory object.

public interface MessageFactory {
 public Message createMessage(String id, String command);
 public MessageEvent createMessageEvent(Object obj,
 Message message);
}

Listing 3 Interface MessageFactory

All mentioned classes are located in the package
com.maretzke.raframe.message.

The RA Type RAFrame
The definition of the RA Type’s Events happens
in the DD event-jar.xml. The tag event-
type-name defines a unique name for Events
handled by the RA Type. This name is mapped

Implementing a JAIN SLEE Resource Adaptor

Version 1.1 -4 - 5th October 2005

to a concrete Java class specified by the tag
event-class-name.

<event-definition>
 <event-type-name>
 com.maretzke.raframe.message.incoming.INIT
 </event-type-name>
 <event-type-vendor>maretzke</event-type-vendor>
 <event-type-version>1.0</event-type-version>
 <event-class-name>
 com.maretzke.raframe.message.MessageEvent
 </event-class-name>
</event-definition>

Listing 4 Excerpt of event-jar.xml

The RA Type’s Activity and
Activity Context
The DD resource-adaptor-type-jar.xml
defines amongst others the Activity and Activity
Context for the RA Type.

…
<resource-adaptor-type-classes>
 <activity-type>
 <activity-type-name>
 com.maretzke.raframe.ratype.RAFActivity
 </activity-type-name>
 </activity-type>
…

Listing 5 Activity definition in
resource-adaptor-type-jar.xml

The tag activity-type-name refers to the
Java interface RAFActivity. Its
implementation represents the shareable state for
one single Activity between the RA and the Sbb.

public interface RAFActivity {
 public boolean isValid(int command);
 public void initReceived();
 public void anyReceived();
 public void endReceived();
 public int getInitCounter();
 public int getAnyCounter();
 public int getEndCounter();
 public long getStartTime();
}

Listing 6 Interface RAFActivity

Remember, an Activity is the representation of a
state, specific for exactly one sequence of
Events, for example the establishment of a call
or the setup of an online game session. One
specific Activity is identified by a unique
Activity Handle: here the incoming message’s
identifier. In our example the class
RAFActivityHandle implements the Handle.
Listing 7 shows the generation and lookup of
Activities.

…
 RAFActivityHandle handle =
 new RAFActivityHandle(event.getMessage().getId());

 RAFActivity activity =
 (RAFActivity) activities.get(handle);

 // activity does not exist - let's create one
 if (activity == null) {
 activity = new RAFActivityImpl();
 activities.put(handle, activity);
 }
…

Listing 7 Excerpt of RAFrameResourceAdaptor.onEvent()

On the other hand, Sbbs can access the Activity
through the ActivityContextInterface as
shown in Listing 8.

public void onInitEvent(MessageEvent event,
 ActivityContextInterface ac) {
…
 RAFActivity activity = (RAFActivity) ac.getActivity();
 activity.initReceived();
…
 trace(Level.INFO, "INIT Event: INIT:" +
 activity.getInitCounter() + " ANY:" +
 activity.getAnyCounter() + " END:" +
 activity.getEndCounter() + " Valid state: " +
 activity.isValid(event.getMessage().getCommandId()));
…

Listing 8 Excerpt of BounceSbb’s onInitEvent() method

The RA Type’s offering for Sbbs
The DD defines also the interface between Sbb
components and the RA. This interface is the
only way for Sbb components to interact with
the RA.

…
 <resource-adaptor-interface>
 <resource-adaptor-interface-name>
 com.maretzke.raframe.RAFrameResourceAdaptorSbbInterface
 </resource-adaptor-interface-name>
 </resource-adaptor-interface>
</resource-adaptor-type-classes>
…

Listing 9 RA interface facing Sbbs definition in
resource-adaptor-type-jar.xml

public interface RAFrameResourceAdaptorSbbInterface {
 public void send(Message message);
 public MessageFactory getMessageFactory();
 public RAFrameResourceAdaptorSbbInterface
 getRAFrameProvider();
}

Listing 10 Interface
RAFrameResourceAdaptorSbbInterface

The class com.maretzke.raframe.ra.

RAFrameProviderImpl implements the
interface. Sbbs may ask for a
MessageFactory object to create Message
and MessageEvent objects and access the
send() method of the RA implementation for
sending Message objects.
How does this work?

sbb2ra = (RAFrameResourceAdaptorSbbInterface)
 ctx.lookup("slee/resources/raframe/1.0/sbb2ra");
…
// send an answer back to the resource adaptor / invokee
// generate a message object and ...
Message answer = sbb2ra.getMessageFactory().
 createMessage(event.getMessage().getId(),
 "Command bounced by BounceSbb: " +
 event.getMessage().getCommand());

// ... send it using the resource adaptor
sbb2ra.send(answer);
…

Listing 11 Excerpt of BounceSbb's onAnyEvent() method

The BounceSbb needs to query the JNDI tree for
the Sbb’s interface to the RA. The JNDI name is
configured in the DD of the Sbb.

Implementing a JAIN SLEE Resource Adaptor

Version 1.1 -5 - 5th October 2005

The RA – Structure and Methods
The class RAFrameResourceAdaptor
implements the RAFrame RA and can be located
in the package com.maretzke.raframe.ra.
Most of the RA’s methods implement the
interface javax.slee.ResourceAdaptor and
represent hooks invoked by the JSLEE
environment during the lifecycle of the RA. In
JSLEE version 1.0 (JSR-22) the Resource
Adaptor integration was considered an
implementation specific detail. JSLEE version
1.1 (JSR-240) focuses on the Resource Adaptor
architecture, however is at the time being not
finished. The open source project Mobicents
follows the standard activities very closely and
implements already most of the aspects of
JSLEE version 1.1. So, if you encounter
differences or abnormalities they could be
motivated by following the standard quite
closely.

entityCreated() and entityActivated()
The method entityCreated() is the very first
method called from the JSLEE environment after
the instantiation of the RA.

public void entityCreated(BootstrapContext bootstrapContext)
 throws ResourceException {
…
 this.bootstrapContext = bootstrapContext;
 this.sleeEndpoint = bootstrapContext.getSleeEndpoint();
 this.eventLookup = bootstrapContext.
 getEventLookupFacility();
 stack = null;
}

Listing 12 the method entityCreated()

The method initializes important references to
JSLEE objects provided by the
BootstrapContext object. Afterwards JSLEE
invokes entitiyActivated()to allow the RA
to finalize initialization work to be done.

public void entityActivated()
 throws ResourceException {
…
 messageFactory = new MessageFactoryImpl();
 raProvider = new RAFrameProviderImpl(this, messageFactory);
 messageParser = new RAFMessageParser();

 stack = new RAFStack(port, remotehost, remoteport);
 stack.addListener(this);
 stack.start();

 initializeNamingContext();

 activities = new HashMap();
…

Listing 13 the method entityActivated()

In the method, the RA creates the RAFStack
object, registers itself as listener and starts the
stack. At the end, a new HashMap object is
created to store activities.

onEvent()
The embedded RAFStack object of the RA
invokes onEvent() and hands over the received
characters as an argument.

In onEvent() the incoming information is
parsed and discarded if invalid.
public void onEvent(String incomingData) {
 MessageEvent event;
 Address address;
 int eventID;

 // parse the incoming data
 try {
 Message message = messageParser.parse(incomingData);
 event = messageFactory.createMessageEvent(this, message);
 }
 catch (IncorrectRequestFormatException irfe) {
 // Unfortunately, the incoming messsage does not comply
 // with the protocol / message
 // format rules. The message is discarded.
 return;
 }

An Activity is created if no one exists.

 // generate the activity handle which uniquely identifies
 // the appropriate activity context
 RAFActivityHandle handle = new RAFActivityHandle
 (event.getMessage().getId());
 // lookup the activity
 RAFActivity activity = (RAFActivity)
 activities.get(handle);

 // activity does not exist - let's create one
 if (activity == null) {
 activity = new RAFActivityImpl();
 activities.put(handle, activity);
 }

The validity of the incoming message according
to the protocol rules is checked utilizing the
Activity’s state machine (isValid()).

 if (!activity.isValid(event.getMessage().getCommandId())) {
 // Not a valid command. Command corrupts rules defined for
 // the protocol
 return;
 }

The identifier of the Event is looked up in the
JNDI tree. If not found in the JNDI tree, it is
assumed a non-known and therefore invalid
message.

 // the fireEvent() method needs a default address to where
 // the events should be fired to
 address = new Address(AddressPlan.IP, "127.0.0.1");

 // get the eventID from the JNDI tree
 try {
 eventID = eventLookup.getEventID(
 "com.maretzke.raframe.message.incoming." +
 event.getMessage().getCommand().toUpperCase(),
 "maretzke", "1.0");
 }
 catch (…) {
 …
 }
 if (eventID == -1) {
 // Silently drop the message because this is not a
 // registered event type.
 return;
 }

Finally, the message is handed over to the
JSLEE environment. This is done via the
SleeEndpoint. Is the message an END
message, the JSLEE environment is notified
with activityEnding() otherwise with
fireEvent().

 try {
 if (event.getMessage().getCommand().toLowerCase().
 compareTo("end") == 0) {

Implementing a JAIN SLEE Resource Adaptor

Version 1.1 -6 - 5th October 2005

 // if the command is an end command, the connected
 // activity needs to end
 // this is signalled to the SLEE via activityEnding()
 sleeEndpoint.activityEnding(
 new RAFActivityHandle(event.getMessage().getId()));
 }
 else {
 // fire the event into the SLEE and proceed
 sleeEndpoint.fireEvent(
 new RAFActivityHandle(event.getMessage().getId()),
 (Object) event, eventID, address);
 }
 }
 catch (…) {
 …
 }
}

Listing 14 the method onEvent()

getActivity() and ActivityEnded()
The method getActivity() returns the
Activity object associated with one specific
Handle.

public Object getActivity(ActivityHandle activityHandle) {
 return activities.get(activityHandle);
}

Listing 15 the method getActivity()

When a specific Activity ends, the RA is notified
by the JSLEE environment via the invocation of
the acitvityEnded() method. Here, the RA
removes the Activity identified by its Handle
from the HashMap object.

public void activityEnded(ActivityHandle activityHandle) {
 activities.remove(activityHandle);
}

Listing 16 the method activityEnded()

To summarize the lifecycle of Activity objects:
One specific Activity is created in the RA’s
onEvent() method when an initial Event is
received – here: the INIT message. During the
lifetime of the Activity it is accessed via the
getActivity() method of the RA. As soon as
the Activity ends, the JSLEE environment
notifies the RA by invoking
activityEnded(). Now the RA removes the
Activity from its storage.

RA Deployment Descriptor
The DD resource-adaptor-jar.xml defines
a name for the RA and associates the RA with a
RA Type. Furthermore, the RA’s class is
specified.

…
<resource-adaptor-name>raframe</resource-adaptor-name>
<resource-adaptor-vendor>maretzke</resource-adaptor-vendor>
<resource-adaptor-version>1.0</resource-adaptor-version>

<resource-adaptor-type-ref>
 <resource-adaptor-type-name>
 raframe_ratype
 </resource-adaptor-type-name>
 <resource-adaptor-type-vendor>
 maretzke
 </resource-adaptor-type-vendor>
 <resource-adaptor-type-version>
 1.0
 </resource-adaptor-type-version>
</resource-adaptor-type-ref>

<resource-adaptor-classes>
 <resource-adaptor-class>
 <resource-adaptor-class-name>
 com.maretzke.raframe.ra.RAFrameResourceAdaptor
 </resource-adaptor-class-name>
 </resource-adaptor-class>
</resource-adaptor-classes>
…
<event-type-ref>
 <event-type-name>
 com.maretzke.raframe.message.incoming.INIT
 </event-type-name>
 <event-type-vendor>maretzke</event-type-vendor>
 <event-type-version>1.0</event-type-version>
</event-type-ref>
…

Listing 17 resource-adaptor-jar.xml

The RA Type for our RA specifies three Events:
INIT, ANY and END. The tag event-type-
name refers to the event-definition found
in the DD event-jar.xml (Listing 4).

Building the RA
Building the RA is quite simple. Change to the
RAFrame directory and run ant. As a
prerequisite, ant (e.g. ant 1.6.1) and Java (e.g.
Java 1.5.0_04) needs to be installed properly.
For an overview of valid ant targets, type ant
help.
After running ant the dist directory should be
populated with three files:

• raframe-1.0.jar

• raframe-local-ra.jar

• raframe-ra-type.jar

The first one contains the build directory and
will be used during service compilation. The
latter both are the RA and the RA Type
deployable unit archives. They can be deployed
into a running Mobicents JSLEE
implementation.

Deploying the RA
Deploying the RA could be done two different
ways: one easy and automated way and the hard
and manual way.
Common for both approaches are the steps to
install the RA. First, the RA Type archive needs
to be installed. Next, the RA archive is installed.
The other way around will fail because the RA
relies on the RA Type. Next, the RA entity needs
to be created. In this step, an association between
the RA ‘raframe#maretzke#1.0’ as described in
the DD (see Listing 17) and the entity name
‘RAFrameRA’ will be created. Afterwards, the
entitiy will be activated and in a last step an
entity link will be created.

Implementing a JAIN SLEE Resource Adaptor

Version 1.1 -7 - 5th October 2005

The manual way
After starting the Mobicents JSLEE point a
WWW browser to http://localhost:8080/jmx-
console/. Type into the text field slee:* to
filter the view. Click on name=

DeploymentMBean. Scroll down and look for
the method install with one String
parameter. Enter the URL where the file
raframe-ra-type.jar is located (e.g.:
file:///D:/RAFrame/dist/raframe-ra-type.jar)
in the text field and press the invoke button. The
archive will be installed and a deployable unit
identifier is returned (e.g.
DeployableUnitID[0]).
Install the RA by repeating the steps above with
the file raframe-local-ra.jar. The
deployable unit identifier for the RA is returned
(e.g. DeployableUnitID[1]).
Return to the JMX Agent View and click on
name=ResourceAdaptorMBean. Scroll down
and look for the method createResource
AdaptorEntity which accepts three
parameters. The first parameter is of type
ResourceAdaptorID. Enter
ResourceAdaptorID[raframe#maretzke#1.0]
into the p1 text field and RAFrameRA into the p2
text field. The p3 text field remains empty. Press
the invoke button. The result page says
“Operation completed successfully without a
return value.“
Return to the MBean view and look for the
activateResourceAdaptorEntity method.
In the text field for p1 enter RAFrameRA. Press
the invoke button. Again, the result page says
“Operation completed successfully without a
return value.“
As the final step, return to the MBean view and
look for the createEntityLink method. Enter
RAFrameRA in both text fields, p1 and p2. Press
the invoke button. Again, the result page says
“Operation completed successfully without a
return value.“
Congratulations, you’ve just deployed the
RAFrame RA successfully!
To see what happened in the background have a
look on the console window of the Mobicents
application server.

The automated way
Obviously, the manual way is fairly complex and
time consuming. Fortunately, there is an
automated way supported by a script stored in
the bin directory.

Change to the bin folder in the RAFrame
directory and execute DeployRAFRA.bat.
Finished!
Switching to the console window of Mobicents
shows exactly the same output as in the case of
manual deployment.

BounceSbb – utilizing the RA
Until now, we concentrated on the RA, on
extending and customizing the JSLEE
environment. From now on, we focus on using
the newly created RA by an application.
The BounceSBB service is pretty simple.
Incoming messages of type INIT and END
increase the Activity’s counter for each of the
commands. The ANY command Event handler
does the same and utilizes the RA to send the
command string back to the sender adding the
prefix “Command bounced by BounceSbb:
”. That’s it!

The Sbb’s Methods
The source for the class BounceSbb is located
in the package com.maretzke.raframe.

service.bounce. The Sbb implements the
interface javax.slee.Sbb. All methods
starting with sbb… or containing Sbb in their
names are inherited from this interface. Most of
them are called by the JSLEE environment
according to the Sbb’s lifecycle defined in the
JSLEE specification8. For BounceSbb, the only
method of value is setSbbContext().

setSbbContext()

…
 Context ctx = (Context) new InitialContext().
 lookup("java:comp/env");

// lookup the trace facility and store it for further usage
 traceFacility = (TraceFacility) ctx.
 lookup("slee/facilities/trace");

// get the reference to the RAFrameProvider class which
// implements RAFrameResourceAdaptorSbbInterface
 sbb2ra = (RAFrameResourceAdaptorSbbInterface) ctx.
 lookup("slee/resources/raframe/1.0/sbb2ra");
…

 Listing 18 Excerpt of the method setSbbContext()

The method queries the JNDI tree for the trace
facility provided by the JSLEE environment and
for the interface to the RA. This interface is used
in the Event handler method for the ANY
command (see Listing 11) to send the answer
back to the initial sender.

Event handling
The most important methods in BounceSbb are
the Event handler onInitEvent(), onAnyEvent

Implementing a JAIN SLEE Resource Adaptor

Version 1.1 -8 - 5th October 2005

and onEndEvent(). BounceSbb declares in its
DD sbb-jar.xml (see Listing 20 below) the
interest in receiving INIT, ANY and END
Events. Refering to the tag event-name in the
DD, the Sbb has to implement on<event-
name>() methods. Listing 19 below shows the
event handler for ANY events.

When invoking the method the JSLEE
environment hands over a MessageEvent
object and the ActivityContextInterface.
public void onAnyEvent(MessageEvent event,
 ActivityContextInterface ac) {

 trace(Level.INFO, "BounceSbb: " + this + ": received an
 incoming Request. CallID = " +
 event.getMessage().getId() +
 ". Command = " +
 event.getMessage().getCommand());
 try {

The ActivityContextInterface object is
used to access the Activity shared by the Sbb
and the RA.
 RAFActivity activity = (RAFActivity) ac.getActivity();
 // change the activity - here only for demonstration

BounceSbb alters the Activity object.
 // purpose, but could be valuable for other Sbbs
 activity.anyReceived();
 trace(Level.INFO, "ANY Event: INIT:" +
 activity.getInitCounter() + " ANY:" +
 activity.getAnyCounter() + " END:" +
 activity.getEndCounter() + " Valid state: " +
 activity.isValid(event.getMessage().getCommandId()));
 } catch (Exception e) {
 …
 }

 // send an answer back to the resource adaptor / stack /
 // invokee
 // generate a message object and ...
 Message answer = sbb2ra.getMessageFactory().
 createMessage(event.getMessage().getId(), "Command
 bounced by BounceSbb: " + event.getMessage().getCommand());

 // ... send it using the resource adaptor
 sbb2ra.send(answer);
}

Listing 19 BounceSbb’s onAnyEvent() method

Sbb Deployment Descriptor
The DD sbb-jar.xml for the service defines
the representing Java class for the service, lists
all the Events the Sbb wants to receive, binds the
Sbb to a specific RA Type and names the JNDI
bindings to one specific RA instance deployed in
the JSLEE environment.

…
 <sbb-name>RAFBounceSbb</sbb-name>
 <sbb-vendor>maretzke</sbb-vendor>
 <sbb-version>1.0</sbb-version>
…
 <sbb-classes>
 <sbb-abstract-class>
 <sbb-abstract-class-name>
 com.maretzke.raframe.service.bounce.BounceSbb
 </sbb-abstract-class-name>
 </sbb-abstract-class>
 </sbb-classes>
…

The Sbb announces the Events to get notified by
the JSLEE environment.
 <event event-direction="Receive" initial-event="True">
 <event-name>InitEvent</event-name>
 <event-type-ref>
 <event-type-name>
 com.maretzke.raframe.message.incoming.INIT
 </event-type-name>
 <event-type-vendor>maretzke</event-type-vendor>

 <event-type-version>1.0</event-type-version>
 </event-type-ref>
 <initial-event-select variable="ActivityContext" />
 </event>
…

The DD binds the Sbb to a specific RA Type.
 <resource-adaptor-type-binding>
 <resource-adaptor-type-ref>
 <resource-adaptor-type-name>
 raframe_ratype
 </resource-adaptor-type-name>
 <resource-adaptor-type-vendor>
 Maretzke
 </resource-adaptor-type-vendor>
 <resource-adaptor-type-version>
 1.0
 </resource-adaptor-type-version>
 </resource-adaptor-type-ref>

The relationship between the concrete
implementation of the RA Type – the RA – is
done through a JNDI link. Remember, in
RAFrameResourceAdaptor.initializeNam

ingContext() we registered the RA with the
JSLEE JNDI tree. Now, in the Sbb’s DD we
reference this JNDI entry.
 <activity-context-interface-factory-name>
 slee/resources/RAFrameRA/raframeacif
 </activity-context-interface-factory-name>
 <resource-adaptor-entity-binding>
 <resource-adaptor-object-name>
 slee/resources/raframe/1.0/sbb2ra
 </resource-adaptor-object-name>
 <resource-adaptor-entity-link>
 RAFrameRA
 </resource-adaptor-entity-link>
 </resource-adaptor-entity-binding>

 </resource-adaptor-type-binding>
…

Listing 20 Excerpt sbb-jar.xml

Building the Sbb
Copy the file raframe-1.0.jar from the folder
RAFrame\dist to the folder RASbb\lib. Then
change to the RASbb directory and execute ant.
As said previously, ant and Java needs to be
installed properly. And again, ant help lists
the valid targets for this project.
After executing ant, the dist directory should
contain the archive bouncesbb-service.jar.
The archive represents a deployable unit for
JSLEE and could be dropped into a running
Mobicents JSLEE environment – with
previously installed RAFrame RA!

Deploying the Sbb

The manual way
As described for the RA, navigate to the
DeploymentMBean and search for the install
method. Enter the URL to the file bouncesbb-
service.jar in the text field and invoke the
method. The operation delivers something like
DeployableUnitID[2]. Now, the service is
installed. Next step is to activate the service.
Navigate to the ServiceManagementMBean
and look for the activate method that accepts
a javax.slee.ServiceID parameter. Enter

Implementing a JAIN SLEE Resource Adaptor

Version 1.1 -9 - 5th October 2005

the value ServiceID[Resource Adaptor
Framework Bounce

Service#maretzke#1.0] in the text field and
invoke the method. The service is deployed and
waiting for Events.

The automated way
Again, a script will help speeding up
deployment. Change to the bin directory located
in the Sbb folder. Execute
DeployBounceSbb.bat and finished!

Testing the installation
And now? Exciting things happened, however
most of them are not visible …
After installing the RAFrame RA and the
BounceSbb as described above, the Mobicents
JSLEE environment is set up to receive
RAFStack protocol messages as defined earlier.
Let’s start experimenting. Change to
RAFrame\bin and execute
startSwingRAFClient.bat.

Figure 5 The RAFStack's Swing client communicating with

the RAFrame application

The user interface allows you to type any
command you want into the text field at the
bottom or compose a command with the buttons.
After pressing the send button, the text in the
text field will be send to the RAFrame RA. Enter
something, for example 102 INIT. In the top
section of the user interface you will see what
was sent to the RA and what answer – if any –
was received. Typing the above command and
pressing the send button will result in a
displayed “Send -----> 102 INIT”.
Thrilling, isn’t it?

Understand what happens
Great, let’s follow the characters typed into the
swing client. Pressing the “Send” button invokes
the method shown in Listing 21.

private void sendBtnActionPerformed(ActionEvent evt) {
 stack.send(inputField.getText());
 outputArea.setText(outputArea.getText() +
 "Send -----> " +
 inputField.getText() + '\n');

Listing 21 sendBtnActionPerformed in RAFSwingClient

The stack object used is an entity of RAFStack.
It establishes a TCP connection to the RAFStack
object inside the RAFrame RA. The RAFStack
inside the RA notifies its listeners. Amongst
them is an instance of
RAFrameResourceAdaptor. The onEvent()
method of the RA is invoked carrying the
received information. Now, onEvent() parses
the message, creates the Activity Context for this
session, checks the validity of the received
message in context of the protocol’s state
machine and delivers the Event in the JSLEE
environment for further processing. The
JSLEE’s Event Router delivers the Event to
every subscribed Sbb. So, BounceSbb is invoked
and processes the incoming Event in its
onInitEvent() method. In there, the
Activity’s Counter for INIT Events is increased
and the event handling is finished!
Let’s verify with the console output of
Mobicents. This output is either shown on the
console you started JBoss/Mobicents or can be
found in the directory jboss-

x.x.x\server\all\log\server.log.

The RAFStack inside the RA received the
characters.
[RAFStackThread] Serverthread Thread-86 started.
[RAFStackThread] bytes received (8) = 102 INIT

The RA gets notified, looks for the Activity
Handle and delivers the Event to the JSLEE.
[RAFrameResourceAdaptor] Incoming request: 102 INIT
[RAFActivityHandle] RAFActivityHanlde(102) called.
[RAFrameResourceAdaptor] RAFrameResourceAdaptor.onEvent():
 RAFrameRA fires event into SLEE. EventID: 13; CallID: 102;
 Command: INIT
[RAFActivityHandle] RAFActivityHanlde(102) called.
[RAFStackThread] Serverthread Thread-86 finished.
[RAFrameResourceAdaptor] RAFrameResourceAdaptor.
 getActivity() called.
[EventRouterImpl] number of child sbbs for service = 0

The JSLEE environment creates a BounceSBB
object and invokes its lifecycle methods.
[STDOUT] BounceSbb [1127376341834]: BounceSBB:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@672bb3:
 sbbCreate() called.
[STDOUT] BounceSbb [1127376341844]: BounceSBB:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@672bb3:
 sbbPostCreate() called.
[STDOUT] BounceSbb [1127376341844]: BounceSBB:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@672bb3:
 sbbStore() called.
[STDOUT] BounceSbb [1127376341844]: BounceSBB:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@672bb3:
 sbbPassivate() called.
[STDOUT] BounceSbb [1127376341864]: BounceSBB:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@672bb3:
 sbbActivate() called.
[STDOUT] BounceSbb [1127376341864]: BounceSBB:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@672bb3:
 sbbLoad() called.

The Sbb is up and deals with the incoming
Event.
[SbbEntity] invoking event handler onInitEvent on
 com.maretzke.raframe.service.bounce.BounceSbbImpl ID
 SbbID[RAFBounceSbb#maretzke#1.0] sbbEntity

Implementing a JAIN SLEE Resource Adaptor

Version 1.1 -10 - 5th October 2005

 org.mobicents.slee.runtime.SbbEntity@17da438 currentEvent
 SleeEventImpl.toString() = {
 eventID = EventTypeID[com.maretzke.raframe.message.
 incoming.INIT#maretzke#1.0], #13
 activitycontext = c3dda2a22bee0db2:2d6d6f65:10678e:-7fae
 eventObject = com.maretzke.raframe.message.
 MessageEventImpl[source=com.maretzke.raframe.ra.
 RAFrameResourceAdaptor@149b9a8]
 address = 127.0.0.1}
[STDOUT] BounceSbb [1127376341914]: BounceSbb:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@672bb3:
 received an incoming Request. CallID = 102. Command = INIT
[RAFrameResourceAdaptor] RAFrameResourceAdaptor.
 getActivity() called.

The Sbb prints the latest counters for debugging.
[STDOUT] BounceSbb [1127376341924]:
 INIT Event: INIT:1 ANY:0 END:0 Valid state: false
[STDOUT] BounceSbb [1127376341924]: BounceSBB:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@672bb3:
 sbbStore() called.
[STDOUT] BounceSbb [1127376341934]: BounceSBB:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@672bb3:
 sbbPassivate() called.

The JSLEE notifies the RA about the successful
Event handling.
[RAFrameResourceAdaptor] RAFrameResourceAdaptor.
 eventProcessingSuccessful() called.

Listing 22 Console output of the Mobicents
JSLEE for "102 INIT"

After sending 102 INIT try the sequence 102
ANY, 102 ANY, 102 END, 102 ANY. Examine the
server’s log carefully to see what happens.

The following segment of the log file shows the
processing of the ANY event.
[RAFStackThread] Serverthread Thread-76 started.
[RAFStackThread] bytes received (7) = 102 ANY
[RAFrameResourceAdaptor] Incoming request: 102 ANY
[RAFActivityHandle] RAFActivityHanlde(102) called.
[RAFrameResourceAdaptor] RAFrameResourceAdaptor.onEvent():
 RAFrameRA fires event into SLEE. EventID: 14; CallID: 102;
 Command: ANY
[RAFActivityHandle] RAFActivityHanlde(102) called.
[RAFStackThread] Serverthread Thread-76 finished.
[STDOUT] BounceSbb [1128686932030]: BounceSBB:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@1ab0e3:
 sbbActivate() called.
[STDOUT] BounceSbb [1128686932041]: BounceSBB:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@1ab0e3:
 sbbLoad() called.
[SbbEntity] invoking event handler onAnyEvent on
 com.maretzke.raframe.service.bounce.BounceSbbImpl ID
 SbbID[RAFBounceSbb#maretzke#1.0] sbbEntity
 org.mobicents.slee.runtime.SbbEntity
 @faadb1 currentEvent SleeEventImpl.toString() = {
 eventID = EventTypeID[com.maretzke.raframe.message.
 incoming.ANY#maretzke#1.0], #14
 activitycontext = 11d1def534ea1be0:5621c4:106ca5530:-7fc4
 eventObject = com.maretzke.raframe.message.
 MessageEventImpl[source=com.maretzke.raframe.ra.
 RAFrameResourceAdaptor@faf9c1]
 address = 127.0.0.1}
[STDOUT] BounceSbb [1128686932041]: BounceSbb:
 com.maretzke.raframe.service.bounce.BounceSbbImpl@1ab0e3:
 received an incoming Request. CallID = 102. Command = ANY
[RAFrameResourceAdaptor] RAFrameResourceAdaptor.
 getActivity() called.
[STDOUT] BounceSbb [1128686932041]:
 ANY Event: INIT:1 ANY:1 END:0 Valid state: true

The Sbb prepares a message to send via the RA.
[RAFrameProviderImpl] getMessageFactory() called.

The RA accepts the message through the
RAFrameResourceAdaptorSbbInterface’s
send method and …
[RAFrameProviderImpl] Sending the message to the stack

… hands it over to the RAFStack instance.
[RAFrameResourceAdaptor] Sending message to stack:
 102: Command bounced by BounceSbb: ANY
[RAFStack] RAFStack sends the following information:
 102: Command bounced by BounceSbb: ANY
[RAFStack] Socket bound to /127.0.0.1 / 2047
[STDOUT] BounceSbb [1128686932071]: BounceSBB:
 com.maretzke.raframe.service.bounce.
 BounceSbbImpl@1ab0e3: sbbStore() called.
[STDOUT] BounceSbb [1128686932071]: BounceSBB:
 com.maretzke.raframe.service.bounce.
 BounceSbbImpl@1ab0e3: sbbPassivate() called.
[RAFrameResourceAdaptor] RAFrameResourceAdaptor.
 eventProcessingSuccessful() called.

The next segment shows processing of the END
Event.
[RAFStackThread] Serverthread Thread-78 started.
[RAFStackThread] bytes received (7) = 102 END
[RAFrameResourceAdaptor] Incoming request: 102 END
[RAFActivityHandle] RAFActivityHanlde(102) called.
[RAFrameResourceAdaptor] RAFrameResourceAdaptor.onEvent():
 RAFrameRA signals ending activity to SLEE. EventID: 15;
 CallID: 102; Command: END
[RAFActivityHandle] RAFActivityHanlde(102) called.
[RAFStackThread] Serverthread Thread-78 finished.
[STDOUT] BounceSbb [1128686938179]: BounceSBB:
 com.maretzke.raframe.service.bounce.
 BounceSbbImpl@1ab0e3: sbbActivate() called.
[STDOUT] BounceSbb [1128686938179]: BounceSBB:
 com.maretzke.raframe.service.bounce.
 BounceSbbImpl@1ab0e3: sbbStore() called.
[STDOUT] BounceSbb [1128686938179]: BounceSBB:
 com.maretzke.raframe.service.bounce.
 BounceSbbImpl@1ab0e3: sbbRemove() called.
[RAFrameResourceAdaptor] RAFrameResourceAdaptor.
 activityEnded() called.
[RAFrameResourceAdaptor] RAFrameResourceAdaptor.
 eventProcessingSuccessful() called.

The last snippet shows the rejection of the …
[RAFStackThread] Serverthread Thread-79 started.
[RAFStackThread] bytes received (7) = 102 ANY
[RAFrameResourceAdaptor] Incoming request: 102 ANY
[RAFActivityHandle] RAFActivityHanlde(102) called.
[RAFrameResourceAdaptor] Not a valid command.
 Command corrupts rules defined for the protocol.
[RAFStackThread] Serverthread Thread-79 finished.

Listing 23 Console output of the Mobicents
JSLEE for "102 ANY, 102 END, 102 ANY"

What’s next?
RAFrame is already quite a complex construct
from a programming perspective and if you
kick-started into JSLEE programming it models.
However from a communication and protocol
perspective RAFrame represents quite a simple
protocol and interaction model.
If time allows, the example needs more attention
on transactions, a more complex state model, a
more demanding protocol model and some
interaction initiated by Sbbs.
For questions and comments please contact me
via michael@maretzke.com.

1 JAIN SLEE overview: http://www.maretzke.de/pub/lectures/
JSLEE_Overview_2005/index.html
2 JAIN SLEE principles:
http://java.sun.com/products/jain/article_slee_ principles.html
3 JAIN SLEE Tutorial: http://java.sun.com/products/jain/JAIN-
SLEE-Tutorial.pdf
4 http://www.mobicents.org/
5 http://wiki.java.net/bin/view/Communications/MobicentsQu
ickStartGuide
6 http://jcp.org/aboutJava/communityprocess/edr/jsr240/in
dex.html
7 http://www.maretzke.com/pub/howtos/mobicents_ra/inde
x.html
8 JSLEE v1.1 Specifciation , Early Draft Review, chapter 6.2
SBB object life cycle, page 52

