HowTo deploy J2EE Application using ATG
Dynamo Version 5.0

25.07.2001, mm

Autor Michael Maretzke
eMail michael@maretzke.com
Stand 31.07.2001
Status preliminary finished released
x intern x extern
Version 1.0
Druckdatum 17.11.03 22:25

Verwendungszweck Knowledge Management

Overview of J2EE Deployment

1. Overview of J2EE Deployment ..o ssssssssssssssssssssssnss 3
1.1. DeplOYMENT DESCIIPIONScuiveieiiiieisie e 3
1.2. ATCRIVE FIBS ...ttt 4
1.2.1 WED AFCHIVES = WAR ...ttt 4
122 Enterprise Java Bean Archives — EJB JAR ..o 4
123 Application Client Archives — APPClIENt JARcoviioiiricessees s 4
124 Enterprise Application Archvies — EAR ..o 5
1.3. Roles involved in the deploymMENT PrOCESSvvvivcveieiiiceetcte s 5
1.3.1 Application Component Provider (ACP)cocceiiiiiicceess sttt 5
1.3.2 Application ASSEMDBIET (AA)........cciiiiiiiiiieceee et 5
2. DepPlOYMENE PrOCESS ..cucucuuirrererisicsssssss e e ss e s s b s e s E b e e 6
2.1. ATG SPECIfIC EXIENSIONS ...ttt b bbb 6
2141 ATG MOAUIE EXIENSIONS ...ttt 6
212 ATG SPECific J2EE EXIEBNSIONScvvviiii ittt 7
2.2. ATG’s deployment t00] DaArING.........c..c.iurririeeeeireiiei bbb 9
2.3. Deploying an unpacked appliCation............cccvviiucrereeiiieceee e 10
2.3.1 a POSSILIE AIFECIONY STIUCKUTE ... 10
232 running ATG’s deployment t00] DariNgccevviiiiiiciieeeeece e 10
24. Deploying an application in EAR fOrMat..........cccviiriericecee e 11
241 running ATG’s deployment t00l DArING ..o 11
2.5. Starting ATG Dynamo with deployed applicationccccciiiiceesi e 12
2.6. Summary of ATGs J2EE deployment process using TogetherSoft ControlCenter...........ccccoviveuneee. 13

B T LY =Y (=) (=Y 14

Overview of J2EE Deployment

1 Overview of J2EE Deployment

J2EE means applications needs will be coded into one of four acceptable component types. These are Servlets,
JavaServer Pages, Tag Libraries and Enterprise JavaBeans. Plugging them together to an application is one of
J2EE-deployment tasks.

J2EE introduces very strict application packaging. J2SE doesn’t matter about how to deploy applications. This point
was strictly changed introducing J2EE. A reliant process and format was defined.

While J2EE strictly rules creating the application archive the deployment process is not described at all. Deployment
means here making the application archive run in a specific J2EE container (e.g. ATG Dynamo). Here are many
ways a J2EE container deploys the application.

After the graphical overview the relevant entities for J2EE deployment will be described shortly. Further information
about J2EE deployment may be found at [SUNO1], [SUNO02], [SUNO3], [SUN04], [SUNO5] and [ATGO1].

JZEE Deployment Process Il\l

!

(ﬁ.pplicatinn Component Provider) ACP adds deployment
L _____ descriptors to each archive
app client JAR AR EJB JAR

components provided swith
deployment descriptors A4 s responsible for setting [
- ervironment walues declared
_____ by the components. A s alsa
respaonsible for building a
dlohal deployment descriptar
for the application.

[' Application Assembler

ready to deploy J2ZEE |\;\.
::. ___________ compliant application

Graphic 10verview of J2EE deployment process and involved roles
1.1 Deployment Descriptors

The functional parts of an application are stored in component archives. To make these archives fit together more
logical information about how to plug them together is needed. It also declares the environment expected by the

Overview of J2EE Deployment

components. This environment must be configured before the application can be run. This higher-level information
(e.g. name and description of components) is stored in so called deployment descriptors.

The deployment descriptor is a XML-file packaged with the component’s or application’s archive file.
1.2 Archive Files

Each of the single archive files has its own archive format. They all use the JAR file format but differ internally.
1.21 Web Archives - WAR

The web archive contains classes, content, JSPs and a single deployment descriptor ,,web . xm1™ for a web
application. One way to think of a WAR file is a JAR-ed version of the web site’s document root.

WAR archive structure

<JSP pages and content resources>
WEB-INF/
web.xml (deployment descriptor)
classes/
<classes and resources>
lib/

<class and resource .jar files>

1.2.2 Enterprise Java Bean Archives - EJB JAR

The EJB JAR contains the classes and deployment descriptor for an EJB application. This archive is basically a JAR
file of the classes with a deployment descriptor ,,e jb . xm1 ™ added.

EJB JAR archive structure

<classes and resources>
META-INF/
ejb.xml (deployment descriptor)

1.2.3 Application Client Archives — AppClient JAR

The AppClient JAR contains the classes and deployment descriptor for an application client. The archive is basically
a JAR file of the classes, a deployment descriptor and a MANTFEST . MF file.

Deployment process

AppClient JAR archive structure

<classes and resources>
META-INF/
application-client.xml (deployment descriptor)

MANIFEST.MF (names the main class)

1.24 Enterprise Application Archvies — EAR

An EAR archive file is also basically a JAR archive file. It contains the EJB JAR, WAR and the AppClient JAR file.
They are packaged as single units into the EAR file, means they will not be decompressed. They are added as they
are. To package the single archives correctly together a deployment descriptor is added.

EAR archive structure

<EJB JAR, WAR and AppClient JAR>
META-INFE/

application.xml (deployment descriptor)

1.3 Roles involved in the deployment process
Roles may imply that one person or perhaps more persons may implement the role. Roles are more like a view on
the work a person does.

111 Application Component Provider (ACP)
One or more ACP produce archive files in the J2EE context. They produce WARs, EJB JARs, AppClient JARs and
provide them all with deployment descriptors. These components are delivered to the AA described next.

1.1.2 Application Assembler (AA)
The AA takes components delivered from one or more ACP and plug them together to get the applications’
functionality. AA is responsible for creating an overall deployment descriptor describing the whole application, setting

needed component attributes and resolving needed references. AA produces another archive file — the EAR,
enterprise application archive.

Deployment process

2 Deployment process

To understand what happens when the J2EE application morphs into an ATG Dynamo J2EE application it's
important to know how ATG treats J2EE applications. Have a kind look at the graphic below. [ATG02]

Wireleia
Farmat
SN
il

| wWaAP-Enabled
Wirgless
Device

Wak
Browser

Relational
Dhatabuiia
S04

File System
Repositony
|HTML XML

Graphic 2 Architecture of ATG Dynamo

J2EE functionality extends core functionality provided by the ATG nucleus component. ATG decided to have a
similar view on J2EE applications as they do on their own applications. Therefor ATG encapsulated the functionality
of J2EE applications into their own application format. J2EE container functionality is provided by an ATG
component called J2EEContainer. Inside this container lives” J2EE.

This approach means there are some ATG specific extensions which will be described below.

21 ATG specific extensions
211 ATG module extensions

[ATGO3], [ATG04] Two files encapsulate the J2EE application and make it look like a ATG application. These files
are:

/config/atg/dynamo/service/j2ee/J2EEContainer.properties

/META-INF/MANIFEST.MF

The first file sets properties for the component J2EEContainer. Typically it extends the portfolio of existing
applications with the new one. A J2EEContainer.properties file may look like this:

Deployment process

Version: S$SRCSfile: J2EEContainer.properties,v $$SRevision: 1.2 SSDate:
2000/06/16 22:12:44 $

applications+=\

{atg.dynamo.root}/AdditionBean/AdditionBean.dar

The second file makes the first file visible to ATG Dynamo. It sets the configuration directory and some
requirements. Have a look:

Manifest—-Version: 1.0
ATG-Config-Path: config/
ATG-Required: DAS
ATG-Patch-Build: 2714
ATG-Patch-Date: 20010619
ATG-Merge—-Log: 5.1p2 5.1.1p2
ATG-Patch-Time: 18:52:52
ATG-Patch-Version: 5.1.1p2

Think of this directory structure for a deployable J2EE application:

ATGAPP
|- config
| |- atg
| | = dynamo
| |- service
| |- j2ee
| |- J2EEContainer.properties
|- META-INF
| |- MANIFEST.MF
|- J2EEAPP
|- WAR
|- EJB JAR

|- APP CLIENT JAR

The red marked parts of the directory tree are extensions to the J2EE standard. The blue part represents the J2EE
compliant application archive.

21.2 ATG specific J2EE extensions

Beside the two files mentioned above there’s one J2EE specific extension with ATG Dynamo. It's the file:
/J2EEAPP/META-INF/DYNAMO-INF/dynamoJ2EESpecifier.xml
This configuration file is needed to supply ATG Dynamo or better said the deploytool Darina with all needed

configuration settings to resolve all references inside the deployment descriptors. The file structure is similar to the
application.xml file. For deeper information about this file see [ATG04].

As an example for this file here’s one containing specific settings for a session bean and an entity bean with
container managed persistance.

<?xml version="1.0" encoding="UTF-8"?>

Deployment process

<!DOCTYPE dynamo-j2ee-specifier SYSTEM

"http://www.atg.com/j2ee/dtds/dynamoJ2EESpecifier/dynamoJ2EESpecifier_1.0.dtd">

<dynamo-j2ee-specifier>
<application-name>
reverser
</application-name>
<war>
<module-uri>
web-app
</module-uri>
</war>
<ejb-jar>
<module-uri>
ejbs
</module-uri>
<enterprise-beans>

<session>
<ejb-name>
Reverser
</ejb-name>
</session>

<entity>
<ejb-name>
StorageBean
</ejb-name>
<cmp-mapping>
<repository-name>

dynamo:/atg/dynamo/service/ jdbc/SQLRepository

</repository-name>

<repository-view-name>

Storage

</repository-view-name>

<read-only>
False
</read-only>

<field-mapping>
<field-name>
itemid
</field-name>
<property-—-name>
itemid
</property-name>
</field-mapping>
<field-mapping>
<field-name>
item
</field-name>
<property-—-name>
item
</property-name>
</field-mapping>
<field-mapping>
<field-name>
description
</field-name>
<property-—-name>
description
</property-name>
</field-mapping>
<field-mapping>
<field-name>
location
</field-name>
<property-—-name>

Deployment process

location
</property-name>
</field-mapping>
</cmp-mapping>

<finder-method>
<method-name>
findByPrimaryKey
</method-name>
<finder—-query>
<! [CDATA[emp_itemid = 20]]>
</finder-query>
</finder-method>

<finder-method>
<method-name>
findAll
</method-name>
<finder—-query>
ALL
</finder-query>
</finder-method>
</entity>
</enterprise-beans>
</ejb-jar>
</dynamo-j2ee-specifier>

2.2 ATG’s deployment tool Darina

An J2EE compliant application needs to be adapted to the final production J2EE container. The adaptions are e.g.:
e checking the deployment descriptor

e checking the directory structure

e compiling the sources

e adding stub and skeleton features to the beans

e make specific adaptions

These tasks will be done with Darina. Have a look at the following sections about how to run Darina.

Deployment process

2.3 Deploying an unpacked application

The deployment tool Darina is capable of building a ATG compliant J2EE application from scratch. This means if
there’s no other tool in the development process producing EAR files (e.g. JBuilder, TogetherSoft ControlCenter, ...
create EAR files) Darina does this for the developer. This approach is interesting if there’s nothing more than a text
editor and a telnet client available for development (can’t imagine a company developing this way software).

231 apossible directory structure

Below is a possible directory structure. It's a structure ATG uses in it's demo application. It prooved its concept and
therefor let’s look at it:

ATG_J2EE_Application
|- j2ee_application.dar

|- META-INF
| |- MANIFEST.MF
|- config
| |- atg
| | - dynamo
| |- service
| |- j2ee
| | |- J2EEContainer.properties
| |- jdbc
| - ...
|- j2ee-apps
|- META-INF

| |- application.xml
| | = DYNAMO-INF
| - dynamoJ2EESpecifier.xml

appclient

|- META-INF

| |- application-client.xml

| |- MANIFEST.MF

|- (packaged sources)

ejbs

|- META-INF

| |- ejb-jar.xml

|- (packaged sources of ejbs)

- web-app

|- (web resources as JSP's, HTML's, etc.)

|- WEB—-INF
|- web.xml
|- classes
| |- (packaged sources of servlets & tags)
|- taglibs
| |-— (TLD files)
|- 1lib

|- (libraries, resources, etc.)

Red parts are ATG specific, blue parts are J2EE. Underlined elements are deployment descriptors.

2.3.2 running ATG’s deployment tool Darina

Start Darina’s deploy process by typing this command in the application’s root directory (here in the directory
ATG_J2EE_Application):

Deployment process

SDYNAMO_HOME/ATG_J2EE_Application#> S$DYNAMO_HOME/bin/runDarina ./j2ee—-apps -o
j2ee_application.dar -build -overwrite-dar

After successfully running Darina a runnable ATG application j2ee_application.dar was built. For more
information about Darina see [ATGO5].

24 Deploying an application in EAR format

A J2EE compliant EAR packed application is a much more easier process to deploy than the way above. But here
are two processes of deployment involved.

First the J2EE EAR is created using whatever tool available. Afterwards the adaption for the specific J2EE container
have to be made (here: ATG Dynamo). This makes the incremental development process a time wasting one.

241 running ATG’s deployment tool Darina

After copying the EAR application into it's application directory in SDYNAMO_HOME directory some things have to
be done:

e run Darina to get a raw dynamoJ2EESpecifier.xml

e create /META-INF/MANIFEST.MF

e create /config/atg/dynamo/service/ . . . filesto configure ATG components
e run Darina again to get a runnable ATG application

We will operate on this example directory structure:

ATG_J2EE_Application
|- j2ee_application.dar
|- META-INF
| |- MANIFEST.MF
|- config
| |- atg
| | = dynamo
| |- service
| |- j2ee
| | |- J2EEContainer.properties
| |- jdbc
| - ...
|

- Jj2ee_application.ear

Red parts are ATG specific, blue parts are J2EE.

First step will be done running following command:

SDYNAMO_HOME/ATG_J2EE_Application#> $DYNAMO_HOME/bin/runDarina
j2ee_application.ear

Darina creates its staging directory named as the EAR-file (here: j2ee_application). The structure of the
directory is similar to the one mentioned in 2.3.1 a possible directory structure.

After this step Darina has created a dynamoJ2EESpecifier.xml file. Edit this one to meet your needs.

Now it's time to create /META-INF/MANIFEST . MF and the ATG specific configuration files in
/config/atg/dynamo/service/. . ..Have akind look at 2.1 ATG specific extensions.

After having the application completely configured it's time to run Darina last time.

Deployment process

SDYNAMO_HOME/ATG_J2EE_Application#> S$DYNAMO_HOME/bin/runDarina
j2ee_application -o j2ee_application.dar -build -overwrite-dar

Now Darina created the ATG runnable application called j2ee_application.dar.

2.5 Starting ATG Dynamo with deployed application

Starting Dynamo with the new application is rather easy. Switch to SDYNAMO_HOME/bin and enter following
command

SDYNAMO_HOME /bin#> ./startDynamo -m ATG_J2EE_Application

The parameter after the —m option points to the directory which contains the Dynamo Archive file (DAR) and the
ATG specific directories for configuration purposes.

Watch the logs after having typed this command above. If there are any errors your configuration is somewhere
incorrect. A lot of fun searching !

References

1.2. Summary of ATGs J2EE deployment process using TogetherSoft
ControlCenter

Deployment process for J2EE applications - focus on integration TogetherSoft ContralCenter and ATG Dynama Il]

Create same EJB's, same Serviets, some JSP's. [,

Create a web application diagram store allwehb-related

companents inside (serviets, JSP's, content, images, ..) and
nenerate J2EE compliant make some useful propery settings.

(application using ContralCenter } ———————————— Afterwards create a ejh assembler diagram stare all

husiness logic components (EJB's) inside and make the

right property settings.

Mow create an Enterprise Application Diagram and place the

J2EE compliant model farmer two diagrams on it. You're ready to deploy.

Use the EJB deployment expert. Use the "generic 1.1" [
pattern. Step through each page and make correct property
settings. Be careful watching for some missing parts in
deployment descriptors {e.g. welcome-file-list in web xml 1)

create JZEE application with all
archives and deployrment b — — — — — —
descriptors

J2EE compliant EAR Be aware of correct path settings hefare starting Darina | B
(JZEEAPP will he aur J2EE campliant application)
use ATG's deployment tool Copy JIEEAPF earto a directary like
"Dating" to make AS specific p————————— — "EOYNAMO_HOMESZEEAPP". Start Darina with
adaptions SOy HAMO_HOMEinirunDarina J2EEAPP ear. Darina will

naowe build a staging directary. Inside this directary a file
called "DynamoJ2EESpecifierxml" is created in
"IMETA-INFIDYNAMO-IMF".

Carrect all settings and start Datina again with
"EONAMO_HOMESMinirunDatring J2ZEEAPP -0 J2EEAPP . dar”
. Mow you'll have a runnable ATG Dynamo application.

J2EE & ATG Dynamo adapted DAR

mation for TG) _____________ Create di.rector\,r hierarchv"I.cunﬂgiatgld_vnamursenﬂcefj?ee" [

and modify file "J2EEContainer propeties". Add a line like
"applications+=\{aty.dynamo.rooty) 2EEAPFIJZEEAPP dar”.
Create another directory "IMETA-INF" and place a
"MWAMIFEST MF" file. Most important entry points to config
directory "ATG-Config-Path: configr,

(add config infor

ready ta run ATG application

Start ATG Dynamao using

SOy HAMO_HOMEinistantDynamo -m J2ZEEAPP".

(start ATG Dynamo) _____________ Access the new application using
"hitpeihostporf=applicationname=". The application name
is the =contesd-root= property in applicationxml deployrment
descriptar,

Graphic 3 Deployment process in detail - focus on integration between ControlCenter and ATG
Dynamo

References

3

[SUNO1]

[SUNO2]
[SUNO3]
[SUNO4]
[SUNO5]

[ATGO1]
[ATGO2]
[ATGO3]
[ATGO4]

[ATGO5]

References

http://java.sun.com/j2ee/download.html#platformspec, J2EE specification
from SUN

http://java.sun.com/products/ejb/docs.html, specification for ejbs

http://java.sun.com/products/serviet/download.html, specification for servlets

http://java.sun.com/products/jisp/download.html, specification for jsps

http://developer.java.sun.com/developer/technicalArticles/J2EE/
behindscenes/BehindtheScenes!l.PDF, good explanation of deployment process, very detailed

ATG Dynamo 5, Programmers Guide, Version 5.1.1, p. 1159 ff, packaging and deployment
ATG Dynamo 5, Programmers Guide, Version 5.1.1, p. 1181 ff, Dynamo Modules
ATG Dynamo 5, Overview, Version 5.1.1, p. 3 ff, Overview of ATG Dynamo Architecture

ATG Dynamo 5, Programmers Guide, Version 5.1.1, p. 1212 ff, Creating
dynamoJ2EESpecifier.xml

ATG Dynamo 5, Programmers Guide, Version 5.1.1, p. 1235 ff, runDarina options

